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On operators commutative with all  invariants for a 
harmonic oscillator with commensurable frequencies 

A S Nikolaevt 
Institute for High Energy Physics. 142284 Protvino, Moscow Region, Russia 

Received 3 February 1995 

Abstracr For the d-dimensional quantum mechanical harmonic oscillator with r commensu- 
rability relation between frequencies, d independent operators commutative with the oscillator 
Hamiltonian and all other commutative with Hamiltonian operators are constructed. These op- 
erators form a basis in the centre of the algebra of invariants (integrals of motion) for the 
quantum mechanical oscillator with commensurable frequencies. Not all of these d operators 
have classical analogues. A classical harmonic oscillator only has d - r commutative with all 
other invariants. These classical integrals first appeared in the Gustavson work on the Birkhoff 
normalization. Operators with such properties are of interest for the perturbation theory, since 
any of them may be (at least formally) continued to become the invariant of the pemrrbed 
Hamiltonian. 

For a long time the multi-dimensional harmonic oscillator with commensurable frequencies 
has attracted attention both in classical and quantum mechanics. Both classical and quantum 
oscillators are well known solvable models in the commensurable as well as in the non- 
commensurable case. These, and related systems are widely used in various areas of physics. 
The harmonic oscillator with commensurable frequencies is, in some sense, a purified 
resonance concept-one of the major topics in modem nonlinear classical mechanics [l]. 
A well known connection was established between the isotropic harmonic oscillator and 
the Kepler problem. Anisotropic harmonic oscillators are of great interest in spectroscopy, 
especially in the investigation of quantum resonance effects (1 : 2 Fermi resonance [6]  and 
its generalizations). Such oscillators were successfully applied to the description of super- 
and hyperdeformed nuclei ([9] and references therein). Being one of the simplest systems 
with the hidden symmetry and non-commutative symmehy algebra these systems show a 
variety of interesting algebraic properties, including quantum algebras [SI. 

The primary interest in a set of operators, each of them commutative with all 
commutative-with Hamiltonian operators originates from perturbation theory [2, 41. The 
latter, from the algebraic point of view, may be described as a procedure for transforming 
the Hamiltonian, which differs slightly from the initial exactly solvable one, into the operator 
belonging to the algebra of invariants for the unperturbed problem. Both the transformation, 
which preserves equations of motion, and the transformed Hamiltonian will be obtained (at 
least formally) as a power series in perturbation strength. The transformed Hamiltonian, 
thus obtained, also has an expansion in powers of generators of this algebra. In such an 
approach, it is clear, that the operator, commutative with all generators of this algebra, 
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will survive under general perturbation, in a sense that it may be extended analytically 
to become commutative with the perturbed Hamiltonian. As a result, eigenvalues of the 
perturbed quantum mechanical problem may be classified, in part, by quantum numbers 
originated from the centre of the algebra of invariants for the unperturbed system. On the 
other hand, in classical mechanics a search for a new, independent of the Hamiltonian, 
integral of motion is one of the primary goals of the perturbation theory. Such an integral 
allows one to reduce the classical system to the lower-dimensional one. 

In this paper we describe the consbuction of operators, commutative with all other 
operators from the algebra of invariants both for classical and quantum mechanical 
oscillators with commensurable frequencies. It is shown that for a d-dimensional quantum 
mechanical oscillator with r commensurability relation between frequencies there always 
exists d independent operators with such properties. Not all of these operators have a 
classical analogue. In fact, the corresponding classical oscillator has only d-r commutative 
with all other invariants. 

These classical integrals first appeared in the Gustavson paper on the Birkhoff 
normalization for the Henon-Heiles system [7] a s  ‘integrals of motion for the perturbed 
system’. We want to note here that the Birkhoff-Gustavson normalization may be naturally 
extended to the quantum mechanical case, leading to a perturbation scheme equivalent to the 
standard Rayleigh-Schrodinger perturbation approximation for the polynomially perturbed 
quantum mechanical harmonic oscillator [lo, 111. 

We will consider the system described by the Hamiltonian 

where pi and & satisfy canonical commutation relations 

and other commutators vanish. 

corresponding classical Hamiltonian 
Simultaneously with the above quantum mechanical system we will discuss the 

d 

&(P, 4 )  = (P? + &??) 
i=O 

with canonically conjugate variables satisfying 

(3) 

One may diagonalize both the above Hamiltonians making the canonical transformation 
to the representation of ladder operators 

and performing an analogous transformation for the classical system (3). These operators 
(functions) will obey commutation relations 

[&, q] = Ski {U& a?} = iSkf (6) 
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and all other commutators (Poisson brackets) will be identical to zero. 

+ U), ow Hamiltonians become NK = a, ak = 
In terms of 'number' operators: Nx = i?:& (or, in classical mechanics, actions: 

2ot 

Now we are in a position to describe generators 0- jymmetry algc-.as for these 
systems-a set of independent operators commutative with the initial Hamiltonian. Using 
terminology borrowed from the classical mechanics we will refer to such an operator as an 
integral of motion or invariant of the Hamiltonian. 

First of all there are d commutative with each other invariants, corresponding to 
individual dimensions 

where fiq is a function of them. The same invariants in the classical case are known as 
actions. 

We will now distinguish between the degenerate (the resonance in the classical 
mechanics) and non-degenerate case. One has rth-fold degeneracy (the resonance condition) 
whenever d frequencies wi,  are connected by r (and only r) linearly independent relations 
of commensurability 

d i = l , . .  . , r  
= O  

k = 1,. , , , d kl 

where all Dir are integerst. It will be convenient for us to interpret the above relations 
as-an existence of r integer-component vectors Di in ddmensional linear space, such that 
(Di ,  G )  = 0. If all mi are rationally independent, the problem is non-degenerate (non- 
resonance). 

In this non-degenerate case operators & (functions Nk) form the complete system of d 
invariants for the anisotropic harmonic oscillator with incommensurable frequencies. In this 
case the symmetry algebra is commutative, and all eigenvalues of fi are non-degenerate 
and classified by fik. 

But the degenerate harmonic oscillator has some hidden symmetry, which reveals in the 
existence of additional non-commutative invariants ki and 2; [3], where 

t Otherwise ergodic on the energy surface. a phase-space trajectory of the classical oscillator with 
commensurability relations between frequencies will be bounded to lower-dimensional ton. In the coordinate 
space of lhe two-dimensional oscillator, for example, this leads to the famous Lissajous figures. The quantum 
mechanical oscillator with commensurable frequencies will have degenerate energy levels. 
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One can easily verify the following properties of these non-Hermitian operators: 

[ ~ , & I = o  i . j = 1 ,  .... r, 

[k?, ri,] = 0 
[k;, kj] = f i i j  

[ K i ,  KJ = Q j j  

[k?, fik] = DjkKi -+ 

- -  
A A  

[ K i ,  Nxl = - & t i  k = ~ l , .  . . ,d, 

where f i i j ,  &, are some polynomids of the above invariants. Obvious changes must be 
made for the classical oscillator. 

In general, not all of these invariants (fi's, k's and k+'s) are independent. Here we 
will neither construct the maximal set of independent Hermitian invariants, nor explicitly 
establish their algebraic properties. We only note that in classical mechanics it is known 
(at least for the two-dimensional case) that, using a nonlinear canonical transformation, an 
isomorphism may be established between the above algebra and u(Z)-symmetry algebra of 
the isotropic two-dimensional harmonic oscillator 151. A quantum mechanical situation is 
more complicated, and nonlinear extensions or quantum deformations of this Lie algebra 
arise IS]. 

Instead, here we will focus on the construction of operators belonging to the centre of the 
above algebra. These operators are commutative with all possible invariants of resonance 
harmonic oscillator. 

we are seeking for analytical (operator) function I(a, ,a,, ...,si, &), commutative 
with all the above generators 

(12) 

We suppose that the (operator) function f has an expansion in increasing powers of 

(13) 

- ^+ * 

[fik, i] = 0 k = 1, ..., d 
[kj,il=o i = ~  ,..., r .  

operators 6; and & 
f 

where all monomials in this expansion are reduced to the Wick normal ordering. If one 
takes into account the identity 

I .  "*."d ,.... "* q m 1  , , .6pCi;' . . ,q 

(14) 

it is clear that in order to satisfy the first part of conditions (12), f must be a function of 
??k only 

.-+men [fik, iC,+"ir,"] = (m - n)a, a, 

,.- 
I = [ ( N I ,  . . . , fid) . 

This is a general condition for the diagonal operator. 

Identity (14) takes the following form: 
For classical oscillator (3) we have analogous arguments, leading to the same conclusion. 

(15) { N k ,  a:"',;) = i(m - n)a:"a,". 
We now proceed to the discussion of the second part of conditions (12) 
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We will need the following general commutation relations: 

which may be easily proved for any function F if one compares matrix elements of these 
operators. 

[I(Nl,. . . , Nd),  Ki] = kj(f(fi1 + D; ! , .  . . , f i c j  + Did) - f(fi1,. . . , fid)) = 0. 
Corresponding classical Poisson brackets will look like 

Using the above relations, condition (16) will be reduced to 
. . *  

(18) 

Therefore in order to find the general form of the operator, commutative with all fik 

(20) 
where we use an obvious vector notation. This may be done in the following way. 

As has already been mentioned, we interpret r commensurability relations (9) as the 
existence of r integer-component independent vectors 6, in d-dimensional linear space. We 
can always perform linear transformation of variables: 

and &, we must solve the following system of r functional equations: 

i(rj + f i i )  = f(rj) i = I , .  . . , r 

r i r=Cr j  bi 4 5 ;  i = 1, ..., d (21) 

i(C-l(rir + B,)) = i(C--'W). 

where C is any d x d invertible matrix. This transformation preserves the structure of the 
above functional system 

(22) 
We will choose matrix C, so that Bi will become the first r new basis vectors. Functional 
equations after such transformation will take the.following simple form: 

i (A, + 1,. . . , f ir , .  . ., ijd) = i(lj,, . . . , lj,) 

I(N,. . . . ~7~ + I.. . . , &) = i(&, . . . , Rd) . 
(U) 

_ -  

It is clear from the above that (operator) functions 
r arguments, and therefore may be expanded in Fourier series 

are independently periodic in the first 

(24) - ZriE:., kj$ 
t m  

f(c-'rir) = E fk ,,.._. t(rirr+l,. , Ndh 
kt ..... k,=-m 

where fk,.....t (&+I, . . . , rird) are arbitrary analytical functions of d-r (operator) variables 

Performing the inverse transformation, we find the general solution of (20) in the form 
rir. 

where we denote 
d 

Pi = Caimfim 
r = O  

i = 1,. . . , d 
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and cui, is a set of vectors, satisfying the following system of linear equations (note the 
different ranges of indices): 

i = l ,  ..., d 
k =  1, ..., r .  2 f f imDkm Sik 

m a  
Using the vector notation we can easily see that the above system is consistent and has 

solutions; Indeed, one may always add d-r independent vectors to our r commensurability 
vectors Di in order to costruct the complete, in general not orthogonal basis. From linear 
system (27) it is clear that G; must be chosen equal to vectors of the basis dual to the above 
constructed basis. 

For the classical oscillator the same transformation, applied to a system of partial 
derivative differential equations, reduces this system to 

a i  --;-=O k = l ,  ..., r 

only. Here we use the same notation as for quantum mechanical case. 
From equation (25) it is clear that for the quantum mechanical harmonic oscillator 

there always exist d independent invariants, commutative with all other invariants. These 
invariants may be subdivided into two distinct groups: 

d-r invariants ?i = ~ m = o f f i , , , f i m ,  i = r + 1, . . . , d. These invariants were implicitly 
found by Gustavson [7] for the classical oscillator. Sometimes such operators are called 
the first-order Casimirs. 
New r periodic invariants exp(2niPk), k = 1,. . . , r specific to the quantum mechanical 
harmonic oscillator and have no classical analogues. 
These d operators form the basis in the centre of algebra of invariants for the harmonic 

oscillator. 
One can easily see that matrix forms of the_above constructed operators are diagonal. 

Moreover, using the fact that quantum numbers N for two eigenvectoE of I? with the same 
eigenvalue may differ only in the integer coefficient combination of Di, we may conclude 
that any degenerate eigensubspace of oscillator Hamiltonian is degenerate eigensubspace 
of all d invariants also. This is not surprising since all these invariants will survive under 
general perturbation 1111. 

Example 1. Two-dimensional isotropic oscillator 

The symmetry algebra for the quantum mechanical isotropic oscillator (commensurability 
relation: w1 - @ = 0) with the Hamiltonian 

d 

A =a: +e: + €3; +e; = A1 +&+ 1 

dl  =ti:& ri: = i2:ti1. 

f l  =lq+&. 

is generated by operators 
- 4 . A  I - a1 a1 & 

According to the above described construction, the basis of the centre of algebra of invariants 
is formed by two operators. The frrst one is the Gustavson invariant 
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And the second one is an additional Hermitian quantum mechanical invariant of the form 

4413 

cos n(fil - fi2). 
One can easily see that matrix elements of this operator coincide with those of the parity 

operator corresponding to the central symmetry transformation 

41 + -41 42 + -42 .  

The same conclusion is valid for the d dimensional isotropic harmonic oscillator. For 
such system d - 1 additional quantum invariants coincide with parities for d - 1 central 
symmetry transformations in d- 1 orthogonal planes in the ddimensional coordinate space. 

Example 2. Two-dimensional l r2  resonance-Fermi  oscillator^ 

The 1 2  Fermi oscillator is described by the Hamiltonian 

k = $: + 4; + jz + 44: = f i 1  + 2fi2 + i. 
Now the commensurability relation between frequencies will be 

2Wl - f& = 0~. 

The symmetry algebra is generated by 

fil = ;Til 
ril 2yi2 ri; 2;;;. 

P1 =fi1++fi2.  

exp ini(Zfi1- f i 2 ) .  

f i 2  = 2;22 

As in the previous example the Gustavson invariant coincides with the Hamiltonian 

And the additional quantum mechanical invariant will be 

Hermitian and anti-Hermitian parts of this invariant corresponds to two (not independent) 
observables. Matrix elements of these observables will @e five different values. One may 
treat these observables as some ‘generalized parities’ for the Fermi oscillator. 

In summary, for a d-dimensional quantum mechanical oscillator with r commensurabil- 
ity relations between frequencies we construct d independent operators commutative with 
the oscillator Hamiltonian and all other commutative with Hamiltonian operators. These 
operators form the basis for the centre of the algebra of invariants for the quantum oscillator 
with commensurable frequencies. Among them only d-r invariants have the classical ana- 
logue. These classical invariants were implicitly found by Gustavson [7]. Other r specific 
to quantum mechanics invariants have the meaning of ‘generalized parities’. Operators with 
such propeaies are of interest for the perturbation theory, since any of them may be (at 
least formally) continued to remain an integral of motion under general perturbation of the 
oscillator Hamiltonian. 
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